
A SCRIPTING LANGUAGE DEVELOPMENT FOR MUSIC PERFORMANCE

1Nima Darabi, 2Naiem Khodabandelooyeganeh, 3Sirous Rezaee 4Mahdi ZiaeNia

1Sharif University of Technology, Dept. of Computer Science, Azadi Ave., Tehran, Iran
2Qazvin IA University, Barajin Road, Qazvin, Iran

3Khaje Nasir University of Technology, Seyyed Khandan Bridge, Tehran, Iran
4 Tehran Central IA University, Imam Hossein Square, Tehran, Iran

ABSTRACT

The present article discusses the general theory and the design
model of the authors’ approach to music performance soft-
ware. The software developed within this framework enables a
user to play back music with optional musical instruments,
combine them, and add special effects to the musical acoustic
waveforms.
The Navazande software, developed in Borland Delphi 5, is a
scripting and programming environment which receives musi-
cal notes in its native scripting language in a text format and
saves the output as a sound file. A Musician familiar with the
software, besides choosing from a wide range of musical in-
struments, can specify properties of the musical waveform,
such as its attack and decay times, damping and harmonic
coefficients, volume envelopes, etc. The software will then
playback the piece.
Our Navazande allows musicians to use complex mathemati-
cal operations in the sound creation process, allowing, essen-
tially, for unlimited creative opportunities. This fusion of
mathematical analysis and synthesis, together with simple use
of performance capabilities, traditionally, has not been avail-
able to musicians, neither in current sound analysis software,
nor in music performance and annotating software.
In order to demonstrate the potentials of our approach, we
have also included a number of musical pieces performed with
our software.

1. INTRODUCTION

Music is sound waves propagating in air. We can pro-
duce these sound naturally (mechanical) or artificially
(software). Our tool is made for the second reasons.
There are many tools producing music, but with some
limitations: Most of these tools are developed in west
and are not able to play eastern notes with frequency
difference of less than half of the tone. There will be no
Iranian instrument in those tools instrument lists. Some
simulated instruments also look unnatural.
This tool does not have mentioned limitations and on
the other hand, it has more unique and new abilities. For
example, each instrument has the ability to apply special

effects to the playing note. Most of the string and wind
instruments have the ability of applying vibration and
glissando to notes. Next point is that our tool provides
all abilities of a single instrument for other instruments.
It is possible to start a piece with some instruments and
change the instrument type during the play continu-
ously. It is also possible to define a new instrument. We
can make novel changes to the method of playing the
instrument. Programming capabilities gives the player to
implement his ideas directly to the sound, instead of
showing them on symbolic notes.

2. INSTRUMENT PLAYER AS SYSTEM

Music pieces are viewed as a sequence of notes, just
like the way letters make a speech. The player reads all
information about the piece by this language and then
translates them to mechanical actions on the instru-
ments. Music (generated sounds) is the output. This
music is again used as feedback to correct later notes.
Figure 1 shows the system of instrument and the playing
piece.

Figure1. Block diagram of the system for playing a musical
piece

A tool which gets a list of notes and plays a sound signal
as output can simulate the player and the instrument to-
gether. There is no distinction between the player and
the instrument in this case. It is the main goal of our tool
(Navazande). We can choose the input and output of our
system from different file formats: we input the note
sequences with a computer programming language in
normal ASCII format and output the result as generic
sound file formats.

Figure 2. Block diagram of Composer tool as interpreter
for a programming code in order to generate music sig-
nals.

Input file format: Navazande should translate the piece
to a script of predefined commands. These files are
saved as *.nav files in ASCII.

Output file format: We use generic wave file to store
output of the tool. The most used file format to store
sound waves is Standard Wave Format (*.wav) which is
a sound signal stored as digital data with a constant
granularity (sampling frequency, sampling accuracy,
number of channels and etc.) [1].

3. USING COMPUTER TO RUN NAVAZANDE

We can simulate a group of instruments playing together
just using the software. We start from playing of a sim-
ple signal up to playing of a whole orchestra master-
piece.

3.1. Development of a signal with the desired fre-
quency and duration

Frequency, is the key factor of a note. Music sounds are
usually made from a single frequency or they have a
significantly stronger frequency. When we call A3 (A
from the third octave), we mean the frequency 440Hz in
any instrument. Intervals in the western music are based
on semitones. A tone describes the difference of fre-
quency between two consequent notes. Frequency of
consequent notes forms a geometric progression. Each
octave consists of six tones (12 semitones) and each
note’s frequency is twice the frequency of the same note
in the lower octave. We can find the parameter of this
progression as follows:

05946.1212
1

==q (1)

First line of figure 3 consists of the names of the notes
forming an octave. Third line introduces the frequency
of each note per source note (C for the lower octave).
Second line is the linear distance of notes based on tone.
This is calculated by calculating logarithm of the third
line.

Figure 3. Comparison of linear trend of western music inter-
vals with logarithmic trend of frequencies.

Consider a note with frequency of f1 to be the base
note, frequency of a note which is m21 tones higher (f2)
can be calculated as follows [3]:

612
2

1

2
2121

22
mm

f
f

== (2)

Now we can calculate the frequency of a note (f0) by
knowing its name based on the basic node and produce
it using an algorithm based on specific amplitude (V0).
Then we can save it with the sampling frequency of fs
and granularity of N bps and save the result in a wave
file and listen to the sound signal which looks like an
alarm tone. The ith sample of sound sinus wave signal
which is generated and has to be saved in the file is cal-
culated like this:

n

sf
f

iCosVpleDigitalSam 2).2(0
0 π= (3)

3.2. Extracting signal’s shape

Shape of a signal is the key factor to understand the
sound’s characteristics. Main factor of difference be-
tween the resulting sounds from two different instru-
ments is the signals shape. Instruments from the same
family which have same sound characteristics and
physical structure; so, we need to extract the signal’s
shape of an instrument to be able to simulate that in-
strument.
Regarding to Fourier theory, a signal’s shape is related
to harmonic factors of the signal. Harmonic factors are
simple musical signals which their frequency is relative
to the base frequency. Having a periodic real function
like Func(t+T)=Func(t), we can generate it from sum of
these harmonics. There are Ak and Pk for each wave sat-
isfying the following equation:

)2(.)(0
1

0 k
K

K k PtfkSinAAtFunc ++= ∑ =

∞=
π (4)

The Ak coefficients are ignorable when k is increasing.
We consider the first h harmonic factors A1 to Ah. More-
over, the coefficients Pk describing the phase have not
effects to how the synthesized wave sounds like. Be-
sides, our signal has not DC level and we can omit the

factor A0. Now knowing several harmonics for an in-
strument we can synthesize its sound. We can just save
the ith sample calculated from the formula below:

).2(. 01
0 t

f
f

iSinAVpleDigitalSam
s

K

hK k∑ =

=
= π (5)

3.3. Change of harmonics during the note playing

In order to synthesize the sound of an instrument more
accurately, we divide a note into several durations such
as starting noise, attack, steady part, and decay; Har-
monics array differs from each other in each of these
durations, so any sample should be generated based on
the harmonics array of the duration it lies in. We can
change the harmonics array continuously during playing
the note, so that it can be heard more natural.

3.4 Simulating percussion instruments and the noise
parameters for single frequency instruments

As percussion instruments usually do not have single
frequency notes, their sound contains a wide range of
frequencies. Even melodic instruments sound the similar
voices especially when they start to play a note, such as
blowing sound in the beginning of a flute note, the first
hammer beat of a piano note, sound of bow on the string
in a violin. We can use white noise for simulating such
voices and add it to the synthesized signal. For produc-
ing such noises we perform the Inverse Fast Fourier
Transform (IFFT) on the amplitude spectrums obtained
from the real instruments.

3.5. Vibrating the sound

Most of the woodwind and string instruments are able to
produce vibration in the both amplitude and frequency.
This happens with vibrating the player’s fingers over the
holes of the woodwind or on the strings of the string
instruments. After analyzing the signals of vibrating
notes of different instruments we reached a simple and
useful model covering all of them properly:
Vibration in amplitude or frequency acts as AM or FM
modulation respectively. In these modulations a simple
sinusoidal signal (with frequency of the vibration of the
player’s fingers) carries over the career signal (with the
frequency of the playing note).
In fact, using the vibration in amplitude will cause the
maximum of the picks to oscillate around the amplitude
average. Also, using the vibration in frequency will
cause the pitch of played note to oscillate around a cen-
tral frequency. Studying of a vibrating note, one can
detect both of these vibrations. We define three parame-
ters in order to implement the vibration:

VibSpeed is the frequency of the message signal in AM
or FM modulation, which can be the frequency of
player’s fingers over the string (around of a few cycles
in the second) . VibFreq is used for FM modulation to
measure the change ratio of the pitch and can be defined
with ∆f/f0. VibVol is a similar quantity for AM modula-
tion and can be defined with ∆V/V0.
To vibrate a simple signal with these parameters, the
amplitude of the envelope to be applied to the sinusoidal
signal with the frequency of f0 and amplitude of V0 can
be calculated as follow:

).2(..00 VibSpeedtSinVibVolVVV π+= (6)

Which is amplitude for resulting signal after carrying the
message signal Sin (2πt.VibSpeed). The parameter V
should be multiplied by the main signal. In order to ap-
ply the frequency changes and implementing the FM
modulation we should replace the following angle (ϕ)
instead of VibSpeedt.2π in the formula 6:

VibFreqtf ππϕ 22 0 += ∫ t

0
dttVibSpeedSin)..2(π (7)

Figure 4. Using AM and FM modulation to make vi-
bration in the instrument’s voice.

3.6. Design of sound’s envelope

Sound signal shape which is made from joining conse-
quent maximums of periods is called the sound’s enve-
lope. This diagram is another important factor for un-
derstanding sound characteristics of an instrument. Dif-
ferent instruments will be different from this aspect.
String instruments make sound by beating a string with
two fixed ends. They make a constant wave which fades
out by time. Fade out usually has a logarithmic tail; so
we can set a logarithmic fade out factor to the wave
showing that sound is fading out after rising fast (figure
5). This kind of fade out does not exist in wind instru-
ments; while the air blows into the instrument, it makes
sound (figure 6).

Figure 5. The harp note rises intensively and fades out
with a logarithmic tale.

Figure 6. The Oboe makes sound, while air blows in it.

Studying the different kinds of envelopes for different
instruments, one can find a general pattern which can
cover all the possible shapes of the envelopes with
changing in its parameters. We use the model shown in
the figure 7. We normalize the time axis so that time
unit becomes the duration of the played note. During the
time this note played from 0 to 1, amplitude of the wave
determined by the pattern of the (xi, yi) points. They are
connected with straight lines. We just multiply each
sample of the signal by the function shown in the figure
7 in order to apply the envelope to the synthesized sim-
ple signal.

Figure 7: The pattern used in our tool to model the
envelope of a musical signal

Figure 8. Changing the parameter γ determines the con-
cavity of the envelope in the attack duration of the note
(from starting playing the note to the first point defined in
the pattern)

γ)(
1

1 x
xyy = (8)

Except offset all of the points (xi, yi) are connected to
each other through straight lines. The connection’s func-
tion definition is based on formula 8. This function
meets the points (0, 0) and (x1, y1) as expected, but the
parameter γ should specify the concavity of the curve
connected these two pointes. If γ=1 then this line is
straight. The curve concaves upward for γ>1 and
downward for γ<1. We defined parameter γ in order to
simulate the attack of the synthesized wave to be more
similar to the real wave. It is very clear in Figure 7. It is
possible to hear the fading part of the wave after stop-
ping the note’s playing. The tale of the signal shows the
fading of its amplitude based on the α factor. In order to
customize envelope pattern for signal amplitude we
should specify right values for γ parameter and right
points for (xi, yi).

3.7. Simulation of simultaneous sounds

Usually different sounds mix together at same time In a
part of music cause of three reasons:

1. Mixture of fading part of the previous played waves
and current waves.

2. Playing different notes at same time with an in-
strument like piano

3. Playing different notes at same time with different
instruments like an orchestral piece.

For simulating this mixture we should perform the cal-
culation for a single sample of each signal seperatly and
then save their summary in the wave file.

4. NAVAZANDE’S INTERFACE

Our interface is as simple as a common text editor. The
text is a code which contains musical notes sequence
(their pitch and duration) and definition of the instru-
ments. After execution of this code a sound file will be
generated as the output. The Navazande program exe-
cutes all the commands as an interpreter and it will re-
port in the case of occurring any error. The content of
the Navazande program includes about 25 commands
and some constants up to now. It has two parts: header
and body. Error detection process is based on LALR
compiler, which has a fine parsing and error detection
speed [4]. In this paper it is not possible to describe the
detailed procedures of compiling and error detection as
well as syntax description of the developed scripting
language. In the figure 9 the correspondent code for
performing an Iranian musical piece “Zard -e- Malije”
with the instrument “Iranian Tar” is illustrated.

4.1. A practical example

We aim to simulate the sound of an Iranian instrument
“Tar”. First, a pure and simple note of the instrument is
needed. We choose a one second typical played note,
then obtain its amplitude spectrum in the frequency do-
main with performing the Fast Fourier Transform (FFT).

Figure 10. Time diagram sample note for Iranian instru-
ment; Tar. We can figure shape parameters for domain
out of this diagram.

Ak=[0.31, 1, 0.6, 0.12, 0.16, 0.13, 0.04, 0.02, 0.05, 0.03]

Figure 11. Frequency diagram. Main harmonic parame-
ters can be figured out of this diagram.

A good approximation of the wave can be found by
multiplying numbers of Ak array (figure 10) by first to
tenth harmonic sinus functions of formula number 5.
Outcome will be an acceptable approximation for Tar
instrument’s sound. In addition we need to simulate the
signal shape (figure 11), so we need to analyze Tar’s
sound versus time. For this reason, we put the whole
signal shape of the sample note from beginning to end
in a unit square, and then we choose enough point on
the shape to have a good approximation for the covering
curve. We find α using the dying part of wave and γ
using the ascending part of wave from beginning to the
first point. Parameters defined in figure 12 can simulate
the domain covering function with a good approxima-
tion. Now we can have any music with any instrument’s
sound just by setting these parameters correctly.

Figure 12. Code for playing a famous Iranian musical
piece “Zard-e-Malije”from “Abol-Hasan Saba”

5. REFERENCES

[1] http://ccrma.stanford.edu/CCRMA/Courses/422/projects/
WaveFormat

[2] Steven W. Smith, “The Scientist and Engineer's Guide to
Digital Signal Processing”, California Technical Publish-
ing, pp. 169_184, pp. 311_318, 1999.

[3] N. Darabi, “Music from the perspective of digital signals”
(English title), Proceeding of 7th Iranian students confer-
ence on electrical engineering, 2004.

[4] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman , “Compil-
ers: Principles, Techniques, and Tools”, Addison-Wesley
Publishing Co., 1986

[5] N. Darabi, N. H. Azimi, H. Nojumi, “Recognition of
Dastgah and Maqam for Persian Music with Detecting
Skeletal Melodic Models”, The second annual IEEE
BENELUX/DSP Valley Signal Processing Symposium
(SPS-DARTS 2006)

Parameters for
saving output

Instrument
definition

Musical notes
of the piece

